opencv 25 background subtraction | motion detection



background subtraction detects movement






#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/live cam.mp4")
background_subtract = cv2.createBackgroundSubtractorMOG2()

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    mask = background_subtract.apply(frame)

    cv2.imshow('frame', frame)
    cv2.imshow('background subtract', mask)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

opencv 24 houghcircle | circle detection


houghcircle detection after blurring gray image

blur


#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/plate.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    blur = cv2.medianBlur(gray, 5)


    circles = cv2.HoughCircles(blur, cv2.HOUGH_GRADIENT, 1, 50, param1=50,
                               param2=50, minRadius=10, maxRadius=100)

    if not circles is None:
        detected_circles = np.uint16(np.around(circles))

        for (x, y, r) in detected_circles[0, :]:
            cv2.circle(frame, (x, y), r, (0, 255, 0), 2)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('blur', blur)


    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Wednesday, 24 March 2021

opencv 23 hough transform | line detection


hough transform is applied after canny edge detection, lines are detected

canny edge


#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Tokyo night drive.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    edges = cv2.Canny(gray, 254, 255, apertureSize=3)


    lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=100, maxLineGap=10)

    if not lines is None:
        for line in lines:
            x1, y1, x2, y2 = line[0]
            cv2.line(frame, (x1, y1), (x2, y2), (0, 0, 255), 5)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('canny edge', edges)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Tuesday, 23 March 2021

opencv 22 histogram


red channel

green channel

blue channel

histogram
#main.py
import numpy as np
import cv2
from matplotlib import pyplot as plt

mountain1 = cv2.imread('assets/mountain2.jpg')
b, g, r = cv2.split(mountain1)

cv2.imshow('img', mountain1)
cv2.imshow('b', b)
cv2.imshow('g', g)
cv2.imshow('r', r)

fig, axs = plt.subplots(1, 3)
axs[0].hist(b.ravel(), 256, [0, 256], color='b')
axs[0].set_title('blue')
axs[1].hist(g.ravel(), 256, [0, 256], color='g')
axs[1].set_title('green')
axs[2].hist(r.ravel(), 256, [0, 256], color='r')
axs[2].set_title('red')

for ax in axs.flat:
    ax.set(xlabel='pixel value', ylabel='count')

# Hide x labels and tick labels for top plots and y ticks for right plots.
for ax in axs.flat:
    ax.label_outer()

#plt.hist(b.ravel(), 256, [0, 256])
#plt.hist(g.ravel(), 256, [0, 256])
#plt.hist(r.ravel(), 256, [0, 256])
fig.suptitle('image histogram')
plt.show()

cv2.waitKey(0)
cv2.destroyAllWindows()

reference:

matplotlib import ft2font error
pip uninstall matplotlib
pip install -U matplotlib==3.2.0rc1

matplotlib multiple plot

opencv 21 detect geometric shapes


original image

apply threshold

draw contour and text
#main.py
import numpy as np
import cv2

img = cv2.imread('assets/geometric shapes.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 70, 80, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

for contour in contours:
    if cv2.contourArea(contour) < 2000:
        continue
    #polyDP (contour, accuracy, shape closed?)
    approx = cv2.approxPolyDP(contour, 0.01 * cv2.arcLength(contour, True), True)
    cv2.drawContours(img, [approx], 0, (255, 255 , 255), 1)
    #print(approx)
    x = approx.ravel()[0]
    y = approx.ravel()[1] - 15

    if len(approx) == 3:
        cv2.putText(img, 'triangle', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 4:
        x, y, w, h = cv2.boundingRect(approx)
        aspectRatio = float(w)/h
        if aspectRatio >= 0.95 and aspectRatio <= 1.05:
            cv2.putText(img, 'square', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
        else:
            cv2.putText(img, 'rectangle', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 5:
        cv2.putText(img, 'pentagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 6:
        cv2.putText(img, 'hexagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 7:
        cv2.putText(img, 'heptagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 8:
        cv2.putText(img, 'octagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 9:
        cv2.putText(img, 'nonagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 10:
        cv2.putText(img, 'star', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    else:
        cv2.putText(img, 'circle', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))

cv2.imshow('threshold', thresh)
cv2.imshow('contours', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

reference:

Sunday, 21 March 2021

opencv 20 motion detection


#main.py
import cv2
import numpy as np

cap = cv2.VideoCapture("assets/live cam.mp4")

_, frame1 = cap.read()
_, frame2 = cap.read()

i = 0
while cap.isOpened():
    diff = cv2.absdiff(frame1, frame2)
    gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY)
    dilated = cv2.dilate(thresh, None, iterations=3)
    contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    #cv2.drawContours(frame1, contours, -1, (0, 0, 255), 2)

    for contour in contours:
        (x, y, w, h) = cv2.boundingRect(contour)

        if cv2.contourArea(contour) < 2000:
            continue

        cv2.rectangle(frame1, (x, y), (x+w, y+h), (0, 0, 255), 5)

    cv2.imshow('feed', frame1)

    i += 1
    name = 'motion detection/img' + str(i) + '.jpg'

    cv2.imwrite(name, frame1)

    frame1 = frame2
    _, frame2 = cap.read()

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

------------------------------------
#screenshot.py
import pyscreenshot as ImageGrab

for i in range(200):
    im = ImageGrab.grab(bbox=(100, 500, 1900, 1500))  # X1,Y1,X2,Y2

    name = 'screenshot/img' + str(i) + '.jpg'

    im.save(name)

reference:

screenshot
pip install pyscreenshot
pip install image

live cam

Saturday, 20 March 2021

opencv 19 contours



adaptive threshold

contour
#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    #adaptive threshold (frame, max pixel value, adaptive method, threshold type, neighbour block size, c constant)
    #th1 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
    th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

    contours, hierarchy = cv2.findContours(th2, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

    contour_img = np.uint8(np.full((height, width, 3), 255))

    cv2.drawContours(contour_img, contours, -1, (0, 0, 0), 1)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('threshold', th2)
    cv2.imshow('contourss', contour_img)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

opencv 18 blending image with pyramids




stacked image

blended image


image pyramid (same image with different resolutions)

Laplacian pyramid (low resolution image + edge detection at different resolution) 
#main.py
import numpy as np
import cv2

mountain1 = cv2.imread('assets/mountain1.jpg')
mountain1 = cv2.resize(mountain1, (1200, 800))
#print(mountain1.shape)
mountain2 = cv2.imread('assets/mountain2.jpg')
mountain2 = cv2.resize(mountain2, (1200, 800))
#print(mountain2.shape)

mountain_stack = np.hstack((mountain1[:, :700], mountain2[:, 700:]))

#generate Gaussian pyramid for mountain1
mountain1_copy = mountain1.copy()
mountain1_pyramid = [mountain1_copy]
for i in range(6):
    #decrease image resolution
    mountain1_copy = cv2.pyrDown(mountain1_copy)
    mountain1_pyramid.append(mountain1_copy)

#generate Gaussian pyramid for mountain2
mountain2_copy = mountain2.copy()
mountain2_pyramid = [mountain2_copy]
for i in range(6):
    #decrease image resolution
    mountain2_copy = cv2.pyrDown(mountain2_copy)
    mountain2_pyramid.append(mountain2_copy)

#generate Laplacina Pyramid for mountain1
mountain1_copy = mountain1_pyramid[5]
lp_mountain1 = [mountain1_copy]
for i in range(5, 0, -1):
    resolution_up = cv2.pyrUp(mountain1_pyramid[i])
    shape = mountain1_pyramid[i-1].shape
    resolution_up = cv2.resize(resolution_up, (shape[1], shape[0]))
    laplacian = cv2.subtract(mountain1_pyramid[i-1], resolution_up)
    lp_mountain1.append(laplacian)

#generate Laplacina Pyramid for mountain2
mountain2_copy = mountain2_pyramid[5]
lp_mountain2 = [mountain2_copy]
for i in range(5, 0, -1):
    resolution_up = cv2.pyrUp(mountain2_pyramid[i])
    shape = mountain2_pyramid[i - 1].shape
    resolution_up = cv2.resize(resolution_up, (shape[1], shape[0]))
    laplacian = cv2.subtract(mountain2_pyramid[i-1], resolution_up)
    lp_mountain2.append(laplacian)

#stack laplacian images
lp_pyramid = []
for mount1_lap, mount2_lap in zip(lp_mountain1, lp_mountain2):
    row, col, ch = mount1_lap.shape
    #print(mount1_lap.shape)
    lp_stack = np.hstack((mount1_lap[:, :int(col*7/12)], mount2_lap[:, int(col*7/12):]))
    #print(lp_stack.shape)
    lp_pyramid.append(lp_stack)

#reconstruct stacked image
#reconstruct[0] has a low resolution stacked image
#reconstruct[1] is generated by adding scaled up reconstruct[0] and corresponding laplacian edges
#reconstruct[2] is generated by adding scaled up reconstruct[1] and corresponding laplacian edges
reconstruct = lp_pyramid[0]
for i in range(1, 6):
    reconstruct = cv2.pyrUp(reconstruct)
    #print(reconstruct.shape)
    #print(lp_pyramid[i].shape)
    shape = lp_pyramid[i].shape
    reconstruct = cv2.resize(reconstruct, (shape[1], shape[0]))
    reconstruct = cv2.add(lp_pyramid[i], reconstruct)

cv2.imshow('mountain1', mountain1)
cv2.imshow('mountain2', mountain2)
cv2.imshow('mountain stack', mountain_stack)

"""
for i in range(6):
    image_name = 'mountain2 pyramid' + str(i)
    cv2.imshow(image_name, mountain2_pyramid[i])

for i in range(5, -1, -1):
    image_name = 'mountain laplacian ' + str(i)
    cv2.imshow(image_name, lp_mountain1[i])
"""

cv2.imshow('blended image', reconstruct)

cv2.waitKey(0)
cv2.destroyAllWindows()

reference:

Thursday, 18 March 2021

opencv 17 canny edge detection



gray scale

canny edge detection

#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")
high = 200
low = 100

trackbars_img = np.uint8(np.full((50, 500, 3), 255))
cv2.imshow('trackbars', trackbars_img)

def high_change(x):
    global high
    high = x

def low_change(x):
    global low
    low = x

cv2.createTrackbar('low', 'trackbars', 100, 150, low_change)
cv2.createTrackbar('high', 'trackbars', 200, 255, high_change)

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    canny = cv2.Canny(gray, low, high)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('canny', canny)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

opencv 16 image gradients | edge detection

An image gradient is a directional change in the intensity or color in an image.


gray scale

Laplacian transform, edges are detected 

sobelX detects edge along Y axis

sobelY detects edge along X axis

sobelXY detects all edges
#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    lap = cv2.Laplacian(gray, cv2.CV_64F, ksize=3)
    lap = np.uint8(np.absolute(lap))

    sobelX = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
    sobelY = cv2.Sobel(gray, cv2.CV_64F, 0, 1)

    sobelX = np.uint8(np.absolute(sobelX))
    sobelY = np.uint8(np.absolute(sobelY))

    sobelCombined = cv2.bitwise_or(sobelX, sobelY)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('laplacian', lap)
    cv2.imshow('sobelX', sobelX)
    cv2.imshow('sobelY', sobelY)
    cv2.imshow('sobelCombined', sobelCombined)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Tuesday, 16 March 2021

opencv 15 smoothing | blurring



adaptive threshold

blur (2d convolution)

2d convolution kernel

gaussian blur removes high frequency noise

gaussian convolution kernel

median blur removes salt and pepper noise

bilateral blur preserves edges
#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    #adaptive threshold (frame, max pixel value, adaptive method, threshold type, neighbour block size, c constant)
    th1 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
    #th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

    kernel = np.ones((5, 5), np.float32)/25
    #conv = cv2.filter2D(th1, -1, kernel)
    blur = cv2.blur(th1, (5,5))

    #gaussianBlur (frame, kernel, sigma)
    #designed to remove high frequency noise
    gblur = cv2.GaussianBlur(th1, (5, 5), 0)

    #median method designed to remove salt and pepper noise
    median = cv2.medianBlur(th1, 5)

    #bilateralFilter preserve edges
    bilateralFilter = cv2.bilateralFilter(th1, 9, 75, 75)

    cv2.imshow('frame', frame)
    cv2.imshow('threshold', th1)
    cv2.imshow('convolution', blur)
    cv2.imshow('gaussian', gblur)
    cv2.imshow('median', median)
    cv2.imshow('bilater', bilateralFilter)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference: