Tuesday, 29 October 2019

Python Programming for Finance 1

#powerShell
pip install pandas pandas-datareader matplotlib beautifulsoup4 scikit-learn

#pycharm file->settings->project->interpreter->install libraries

import datetime as dt
import matplotlib.pyplot as plt
from matplotlib import style
import pandas as pd
import pandas_datareader.data as web

style.use('ggplot')

start = dt.datetime(2011, 1, 1)
end = dt.datetime(2019, 10, 30)

df = web.DataReader('TSLA', 'yahoo', start, end)
print(df.tail(6))

-------------------------------
#log
                  High         Low        Open       Close    Volume   Adj Close
Date
2019-10-23  256.140015  251.350006  254.500000  254.679993   5261100  254.679993
2019-10-24  304.929993  289.200012  298.369995  299.679993  29720900  299.679993
2019-10-25  330.000000  296.109985  297.720001  328.130005  29982400  328.130005
2019-10-28  340.839996  322.600006  327.540009  327.709991  18860900  327.709991
2019-10-29  324.299988  314.750000  319.989990  316.220001  12673300  316.220001
2019-10-30  318.790009  309.970001  313.000000  315.010010   9637000  315.010010

-------------------------------
#log print(df.head())

                 High        Low   Open      Close   Volume  Adj Close
Date
2011-01-03  27.000000  25.900000  26.84  26.620001  1283000  26.620001
2011-01-04  26.950001  26.020000  26.66  26.670000  1187400  26.670000
2011-01-05  26.900000  26.190001  26.48  26.830000  1446700  26.830000
2011-01-06  28.000000  26.809999  26.83  27.879999  2061200  27.879999
2011-01-07  28.580000  27.900000  28.00  28.240000  2247900  28.240000

reference:
https://www.youtube.com/watch?v=2BrpKpWwT2A&list=PLQVvvaa0QuDcOdF96TBtRtuQksErCEBYZ&index=1

No comments:

Post a Comment