Sunday, 28 March 2021

African savannah Hyenas

What Elon Musk Does With All His Money

opencv 25 background subtraction | motion detection



background subtraction detects movement






#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/live cam.mp4")
background_subtract = cv2.createBackgroundSubtractorMOG2()

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    mask = background_subtract.apply(frame)

    cv2.imshow('frame', frame)
    cv2.imshow('background subtract', mask)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Joy Yacht

Saturday, 27 March 2021

Manhattan apartment tour



opencv 24 houghcircle | circle detection


houghcircle detection after blurring gray image

blur


#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/plate.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    blur = cv2.medianBlur(gray, 5)


    circles = cv2.HoughCircles(blur, cv2.HOUGH_GRADIENT, 1, 50, param1=50,
                               param2=50, minRadius=10, maxRadius=100)

    if not circles is None:
        detected_circles = np.uint16(np.around(circles))

        for (x, y, r) in detected_circles[0, :]:
            cv2.circle(frame, (x, y), r, (0, 255, 0), 2)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('blur', blur)


    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

oppo find x3 pro


Wednesday, 24 March 2021

opencv 23 hough transform | line detection


hough transform is applied after canny edge detection, lines are detected

canny edge


#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Tokyo night drive.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    edges = cv2.Canny(gray, 254, 255, apertureSize=3)


    lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=100, maxLineGap=10)

    if not lines is None:
        for line in lines:
            x1, y1, x2, y2 = line[0]
            cv2.line(frame, (x1, y1), (x2, y2), (0, 0, 255), 5)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('canny edge', edges)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Tuesday, 23 March 2021

opencv 22 histogram


red channel

green channel

blue channel

histogram
#main.py
import numpy as np
import cv2
from matplotlib import pyplot as plt

mountain1 = cv2.imread('assets/mountain2.jpg')
b, g, r = cv2.split(mountain1)

cv2.imshow('img', mountain1)
cv2.imshow('b', b)
cv2.imshow('g', g)
cv2.imshow('r', r)

fig, axs = plt.subplots(1, 3)
axs[0].hist(b.ravel(), 256, [0, 256], color='b')
axs[0].set_title('blue')
axs[1].hist(g.ravel(), 256, [0, 256], color='g')
axs[1].set_title('green')
axs[2].hist(r.ravel(), 256, [0, 256], color='r')
axs[2].set_title('red')

for ax in axs.flat:
    ax.set(xlabel='pixel value', ylabel='count')

# Hide x labels and tick labels for top plots and y ticks for right plots.
for ax in axs.flat:
    ax.label_outer()

#plt.hist(b.ravel(), 256, [0, 256])
#plt.hist(g.ravel(), 256, [0, 256])
#plt.hist(r.ravel(), 256, [0, 256])
fig.suptitle('image histogram')
plt.show()

cv2.waitKey(0)
cv2.destroyAllWindows()

reference:

matplotlib import ft2font error
pip uninstall matplotlib
pip install -U matplotlib==3.2.0rc1

matplotlib multiple plot

Monday, 22 March 2021

Mutha Trucker

opencv 21 detect geometric shapes


original image

apply threshold

draw contour and text
#main.py
import numpy as np
import cv2

img = cv2.imread('assets/geometric shapes.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 70, 80, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

for contour in contours:
    if cv2.contourArea(contour) < 2000:
        continue
    #polyDP (contour, accuracy, shape closed?)
    approx = cv2.approxPolyDP(contour, 0.01 * cv2.arcLength(contour, True), True)
    cv2.drawContours(img, [approx], 0, (255, 255 , 255), 1)
    #print(approx)
    x = approx.ravel()[0]
    y = approx.ravel()[1] - 15

    if len(approx) == 3:
        cv2.putText(img, 'triangle', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 4:
        x, y, w, h = cv2.boundingRect(approx)
        aspectRatio = float(w)/h
        if aspectRatio >= 0.95 and aspectRatio <= 1.05:
            cv2.putText(img, 'square', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
        else:
            cv2.putText(img, 'rectangle', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 5:
        cv2.putText(img, 'pentagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 6:
        cv2.putText(img, 'hexagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 7:
        cv2.putText(img, 'heptagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 8:
        cv2.putText(img, 'octagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 9:
        cv2.putText(img, 'nonagon', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    elif len(approx) == 10:
        cv2.putText(img, 'star', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))
    else:
        cv2.putText(img, 'circle', (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255))

cv2.imshow('threshold', thresh)
cv2.imshow('contours', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

reference:

中欧班列


Sunday, 21 March 2021

opencv 20 motion detection


#main.py
import cv2
import numpy as np

cap = cv2.VideoCapture("assets/live cam.mp4")

_, frame1 = cap.read()
_, frame2 = cap.read()

i = 0
while cap.isOpened():
    diff = cv2.absdiff(frame1, frame2)
    gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY)
    dilated = cv2.dilate(thresh, None, iterations=3)
    contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    #cv2.drawContours(frame1, contours, -1, (0, 0, 255), 2)

    for contour in contours:
        (x, y, w, h) = cv2.boundingRect(contour)

        if cv2.contourArea(contour) < 2000:
            continue

        cv2.rectangle(frame1, (x, y), (x+w, y+h), (0, 0, 255), 5)

    cv2.imshow('feed', frame1)

    i += 1
    name = 'motion detection/img' + str(i) + '.jpg'

    cv2.imwrite(name, frame1)

    frame1 = frame2
    _, frame2 = cap.read()

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

------------------------------------
#screenshot.py
import pyscreenshot as ImageGrab

for i in range(200):
    im = ImageGrab.grab(bbox=(100, 500, 1900, 1500))  # X1,Y1,X2,Y2

    name = 'screenshot/img' + str(i) + '.jpg'

    im.save(name)

reference:

screenshot
pip install pyscreenshot
pip install image

live cam

Powerful Horse Breeds

Saturday, 20 March 2021

The Life Of An Alaskan Truck Driver


Owner Operator Secrets

opencv 19 contours



adaptive threshold

contour
#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    #adaptive threshold (frame, max pixel value, adaptive method, threshold type, neighbour block size, c constant)
    #th1 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
    th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

    contours, hierarchy = cv2.findContours(th2, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

    contour_img = np.uint8(np.full((height, width, 3), 255))

    cv2.drawContours(contour_img, contours, -1, (0, 0, 0), 1)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('threshold', th2)
    cv2.imshow('contourss', contour_img)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Is Texas Becoming The New California?

opencv 18 blending image with pyramids




stacked image

blended image


image pyramid (same image with different resolutions)

Laplacian pyramid (low resolution image + edge detection at different resolution) 
#main.py
import numpy as np
import cv2

mountain1 = cv2.imread('assets/mountain1.jpg')
mountain1 = cv2.resize(mountain1, (1200, 800))
#print(mountain1.shape)
mountain2 = cv2.imread('assets/mountain2.jpg')
mountain2 = cv2.resize(mountain2, (1200, 800))
#print(mountain2.shape)

mountain_stack = np.hstack((mountain1[:, :700], mountain2[:, 700:]))

#generate Gaussian pyramid for mountain1
mountain1_copy = mountain1.copy()
mountain1_pyramid = [mountain1_copy]
for i in range(6):
    #decrease image resolution
    mountain1_copy = cv2.pyrDown(mountain1_copy)
    mountain1_pyramid.append(mountain1_copy)

#generate Gaussian pyramid for mountain2
mountain2_copy = mountain2.copy()
mountain2_pyramid = [mountain2_copy]
for i in range(6):
    #decrease image resolution
    mountain2_copy = cv2.pyrDown(mountain2_copy)
    mountain2_pyramid.append(mountain2_copy)

#generate Laplacina Pyramid for mountain1
mountain1_copy = mountain1_pyramid[5]
lp_mountain1 = [mountain1_copy]
for i in range(5, 0, -1):
    resolution_up = cv2.pyrUp(mountain1_pyramid[i])
    shape = mountain1_pyramid[i-1].shape
    resolution_up = cv2.resize(resolution_up, (shape[1], shape[0]))
    laplacian = cv2.subtract(mountain1_pyramid[i-1], resolution_up)
    lp_mountain1.append(laplacian)

#generate Laplacina Pyramid for mountain2
mountain2_copy = mountain2_pyramid[5]
lp_mountain2 = [mountain2_copy]
for i in range(5, 0, -1):
    resolution_up = cv2.pyrUp(mountain2_pyramid[i])
    shape = mountain2_pyramid[i - 1].shape
    resolution_up = cv2.resize(resolution_up, (shape[1], shape[0]))
    laplacian = cv2.subtract(mountain2_pyramid[i-1], resolution_up)
    lp_mountain2.append(laplacian)

#stack laplacian images
lp_pyramid = []
for mount1_lap, mount2_lap in zip(lp_mountain1, lp_mountain2):
    row, col, ch = mount1_lap.shape
    #print(mount1_lap.shape)
    lp_stack = np.hstack((mount1_lap[:, :int(col*7/12)], mount2_lap[:, int(col*7/12):]))
    #print(lp_stack.shape)
    lp_pyramid.append(lp_stack)

#reconstruct stacked image
#reconstruct[0] has a low resolution stacked image
#reconstruct[1] is generated by adding scaled up reconstruct[0] and corresponding laplacian edges
#reconstruct[2] is generated by adding scaled up reconstruct[1] and corresponding laplacian edges
reconstruct = lp_pyramid[0]
for i in range(1, 6):
    reconstruct = cv2.pyrUp(reconstruct)
    #print(reconstruct.shape)
    #print(lp_pyramid[i].shape)
    shape = lp_pyramid[i].shape
    reconstruct = cv2.resize(reconstruct, (shape[1], shape[0]))
    reconstruct = cv2.add(lp_pyramid[i], reconstruct)

cv2.imshow('mountain1', mountain1)
cv2.imshow('mountain2', mountain2)
cv2.imshow('mountain stack', mountain_stack)

"""
for i in range(6):
    image_name = 'mountain2 pyramid' + str(i)
    cv2.imshow(image_name, mountain2_pyramid[i])

for i in range(5, -1, -1):
    image_name = 'mountain laplacian ' + str(i)
    cv2.imshow(image_name, lp_mountain1[i])
"""

cv2.imshow('blended image', reconstruct)

cv2.waitKey(0)
cv2.destroyAllWindows()

reference:

Thursday, 18 March 2021

运煤

opencv 17 canny edge detection



gray scale

canny edge detection

#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")
high = 200
low = 100

trackbars_img = np.uint8(np.full((50, 500, 3), 255))
cv2.imshow('trackbars', trackbars_img)

def high_change(x):
    global high
    high = x

def low_change(x):
    global low
    low = x

cv2.createTrackbar('low', 'trackbars', 100, 150, low_change)
cv2.createTrackbar('high', 'trackbars', 200, 255, high_change)

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    canny = cv2.Canny(gray, low, high)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('canny', canny)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Cost of living in Hawaii



Wednesday, 17 March 2021

Las Vegas

opencv 16 image gradients | edge detection

An image gradient is a directional change in the intensity or color in an image.


gray scale

Laplacian transform, edges are detected 

sobelX detects edge along Y axis

sobelY detects edge along X axis

sobelXY detects all edges
#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    lap = cv2.Laplacian(gray, cv2.CV_64F, ksize=3)
    lap = np.uint8(np.absolute(lap))

    sobelX = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
    sobelY = cv2.Sobel(gray, cv2.CV_64F, 0, 1)

    sobelX = np.uint8(np.absolute(sobelX))
    sobelY = np.uint8(np.absolute(sobelY))

    sobelCombined = cv2.bitwise_or(sobelX, sobelY)

    cv2.imshow('frame', frame)
    cv2.imshow('gray', gray)
    cv2.imshow('laplacian', lap)
    cv2.imshow('sobelX', sobelX)
    cv2.imshow('sobelY', sobelY)
    cv2.imshow('sobelCombined', sobelCombined)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference:

Tuesday, 16 March 2021

opencv 15 smoothing | blurring



adaptive threshold

blur (2d convolution)

2d convolution kernel

gaussian blur removes high frequency noise

gaussian convolution kernel

median blur removes salt and pepper noise

bilateral blur preserves edges
#main.py
import numpy as np
import cv2

cap = cv2.VideoCapture("assets/Santa Barbara.mp4")

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    #adaptive threshold (frame, max pixel value, adaptive method, threshold type, neighbour block size, c constant)
    th1 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
    #th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

    kernel = np.ones((5, 5), np.float32)/25
    #conv = cv2.filter2D(th1, -1, kernel)
    blur = cv2.blur(th1, (5,5))

    #gaussianBlur (frame, kernel, sigma)
    #designed to remove high frequency noise
    gblur = cv2.GaussianBlur(th1, (5, 5), 0)

    #median method designed to remove salt and pepper noise
    median = cv2.medianBlur(th1, 5)

    #bilateralFilter preserve edges
    bilateralFilter = cv2.bilateralFilter(th1, 9, 75, 75)

    cv2.imshow('frame', frame)
    cv2.imshow('threshold', th1)
    cv2.imshow('convolution', blur)
    cv2.imshow('gaussian', gblur)
    cv2.imshow('median', median)
    cv2.imshow('bilater', bilateralFilter)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        # wait until any key is pressed
        cv2.waitKey(-1)

cap.release()
cv2.destroyAllWindows()

reference: