green indicates face detected, red indicates eye detected
video url: https://www.youtube.com/watch?v=jw-cxfP5cTQ
#main.py
import numpy as np
import cv2
cap = cv2.VideoCapture("assets/fashion.mp4")
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
while True:
ret, frame = cap.read()
width = int(cap.get(3))
height = int(cap.get(4))
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#detectMultiScale (frame, a, b)
#good value of a is between 1 and 1.5, smaller a = more accurate
#good value of b is between 3 and 6
#detect face
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
#select region of face
roi_gray = gray[y:y + w, x:x + w]
roi_color = frame[y:y + h, x:x + w]
#detect eye on the face
eyes = eye_cascade.detectMultiScale(roi_gray, 1.05, 5)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 0, 255), 2)
cv2.imshow('frame', frame)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
No comments:
Post a Comment