predict house value from unknown dataset with the trained model. (above average = 1, below average = 0)
#house.py
#train on GPU
pysical_devices = tf.config.experimental.list_physical_devices('GPU')
#print("Num GPUs Available: ", len(pysical_devices))
tf.config.experimental.set_memory_growth(pysical_devices[0], True)
#load model
model = load_model('models/house.h5')
#create test samples that are different from data samples
test_samples = [
[10000, 6, 5, 0, 1, 0, 2, 5, 0, 500],
[12000, 7, 5, 1, 1, 1, 3, 7, 0, 600],
[11000, 7, 5, 0, 1, 1, 3, 6, 0, 550],
[11000, 6, 5, 0, 1, 1, 3, 6, 0, 550],
]
test_samples = np.array(test_samples)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_test_samples = scaler.fit_transform(test_samples)
print(scaled_test_samples)
#prediction
predictions = model.predict(x=scaled_test_samples, batch_size=32, verbose=1)
#predicted output index
rounded_predictions = np.argmax(predictions, axis=-1)
print(rounded_predictions)
-------------------------------------
#logs
#scaled input
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
[1. 1. 0. 1. 0. 1. 1. 1. 0. 1. ]
[0.5 1. 0. 0. 0. 1. 1. 0.5 0. 0.5]
[0.5 0. 0. 0. 0. 1. 1. 0.5 0. 0.5]]
#output
[0 1 1 0]
reference:
No comments:
Post a Comment