Saturday, 29 May 2021

opencv 54 mobileNetSSD

SSD300 achieves 74.3% mAP at 59 FPS while SSD500 achieves 76.9% mAP at 22 FPS, which outperforms Faster R-CNN (73.2% mAP at 7 FPS) and YOLOv1 (63.4% mAP at 45 FPS).


project directory
    mobileNetSSD.py
    mobileNet
        MobileNetSSD_deploy.caffemodel
        MobileNetSSD_deploy.prototxt
    asset
        zoo.mp4

#mobileNetSSD.py
import os
import cv2
import numpy as np
import math
import time

# load our serialized model from disk
print("Load MobileNetSSD model")

prototxt_path = "mobileNet/MobileNetSSD_deploy.prototxt"
model_path = "mobileNet/MobileNetSSD_deploy.caffemodel"

# initialize the list of class labels MobileNet SSD was trained to detect
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
           "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
           "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
           "sofa", "train", "tvmonitor"]

net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)

# set CUDA as the preferable backend and target
print("[INFO] setting preferable backend and target to CUDA...")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)


def process_frame_MobileNetSSD(next_frame):
    rgb = cv2.cvtColor(next_frame, cv2.COLOR_BGR2RGB)
    (H, W) = next_frame.shape[:2]

    # convert the frame to a blob and pass the blob through the
    # network and obtain the detections
    blob = cv2.dnn.blobFromImage(next_frame, size=(300, 300), ddepth=cv2.CV_8U)
    net.setInput(blob, scalefactor=1.0 / 127.5, mean=[127.5, 127.5, 127.5])
    detections = net.forward()

    # loop over the detections
    for i in np.arange(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated
        # with the prediction
        confidence = detections[0, 0, i, 2]
        # filter out weak detections by ensuring the `confidence`
        # is greater than the minimum confidence
        if confidence > 0.7:
            # extract the index of the class label from the
            # detections list
            idx = int(detections[0, 0, i, 1])

            # compute the (x, y)-coordinates of the bounding box
            # for the object
            box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
            (startX, startY, endX, endY) = box.astype("int")

            cv2.rectangle(next_frame, (startX, startY), (endX, endY), (0, 255, 0), 3)
            y = startY - 10 if startY - 10 > 10 else startY + 10
            cv2.putText(next_frame, CLASSES[idx] + " " + str(round(confidence, 2)), (startX, y),
                        cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)

    return next_frame


cap = cv2.VideoCapture("assets/zoo.mp4")

# Define the codec and create VideoWriter object
fps = 25.175
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
size = (int(frame_width), int(frame_height))
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
path = 'C:/Users/zchen/PycharmProjects/opencv/googleNet/record'
out = cv2.VideoWriter()
success = out.open(os.path.join(path, "output_mobilenetssd.mov"), fourcc, fps, size, True)

frame_count = 0
t1 = time.time()

while True:
    ret, frame = cap.read()

    if ret == False: break

    frame = process_frame_MobileNetSSD(frame)
    cv2.imshow("frame", frame)
    out.write(frame)
    frame_count += 1

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        cv2.waitKey(-1)  # wait until any key is pressed

t2 = time.time()
# calculate FPS
fps = str(float(frame_count / float(t2 - t1))) + ' FPS'
print("Frames processed: {}".format(frame_count))
print("Elapsed time: {:.2f}".format(float(t2 - t1)))
print("FPS: {}".format(fps))

cap.release()
cv2.destroyAllWindows()

------------------------
#logs
PS C:\Users\zchen\PycharmProjects\opencv> python mobileNetSSD.py
Load MobileNetSSD model
[INFO] setting preferable backend and target to CUDA...
Frames processed: 6772
Elapsed time: 216.37
FPS: 31.297719286548247 FPS

reference:

mobileNet/MobileNetSSD_deploy.prototxt

mobileNet/MobileNetSSD_deploy.caffemodel

Friday, 28 May 2021

opencv 53 convert tensorflow model to opencv


OpenCV DNN prediction:
* shape:  (1, 1000)
* class ID: 292, label: tiger, Panthera tigris
* confidence: 0.9874

#modelConversion.py
import os
import tensorflow as tf
from tensorflow.keras.applications import MobileNet
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
import cv2
import numpy as np

original_tf_model = MobileNet(
    include_top=True,
    weights="imagenet"
)


def get_tf_model_proto(tf_model):
    # define the directory for .pb model
    pb_model_path = "models"

    # define the name of .pb model
    pb_model_name = "mobilenet.pb"

    # create directory for further converted model
    os.makedirs(pb_model_path, exist_ok=True)

    # get model TF graph
    tf_model_graph = tf.function(lambda x: tf_model(x))

    # get concrete function
    tf_model_graph = tf_model_graph.get_concrete_function(
        tf.TensorSpec(tf_model.inputs[0].shape, tf_model.inputs[0].dtype))

    # obtain frozen concrete function
    frozen_tf_func = convert_variables_to_constants_v2(tf_model_graph)
    # get frozen graph
    frozen_tf_func.graph.as_graph_def()

    # save full tf model
    tf.io.write_graph(graph_or_graph_def=frozen_tf_func.graph,
                      logdir=pb_model_path,
                      name=pb_model_name,
                      as_text=False)

    return os.path.join(pb_model_path, pb_model_name)


def get_preprocessed_img(img_path):
    # read the image
    input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
    input_img = input_img.astype(np.float32)

    # define preprocess parameters
    mean = np.array([1.0, 1.0, 1.0]) * 127.5
    scale = 1 / 127.5

    # prepare input blob to fit the model input:
    # 1. subtract mean
    # 2. scale to set pixel values from 0 to 1
    input_blob = cv2.dnn.blobFromImage(
        image=input_img,
        scalefactor=scale,
        size=(224, 224),  # img target size
        mean=mean,
        swapRB=True,  # BGR -> RGB
        crop=True  # center crop
    )
    print("Input blob shape: {}\n".format(input_blob.shape))

    return input_blob


def get_imagenet_labels(labels_path):
    with open(labels_path) as f:
        imagenet_labels = [line.strip() for line in f.readlines()]
    return imagenet_labels


def get_opencv_dnn_prediction(opencv_net, preproc_img, imagenet_labels):
    # set OpenCV DNN input
    opencv_net.setInput(preproc_img)

    # OpenCV DNN inference
    out = opencv_net.forward()
    print("OpenCV DNN prediction: \n")
    print("* shape: ", out.shape)

    # get the predicted class ID
    imagenet_class_id = np.argmax(out)

    # get confidence
    confidence = out[0][imagenet_class_id]
    print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
    print("* confidence: {:.4f}\n".format(confidence))


# get TF frozen graph path
full_pb_path = get_tf_model_proto(original_tf_model)

# read frozen graph with OpenCV API
opencv_net = cv2.dnn.readNetFromTensorflow(full_pb_path)
print("OpenCV model was successfully read. Model layers: \n", opencv_net.getLayerNames())

# get preprocessed image
input_img = get_preprocessed_img("assets/tiger.jpg")

# get ImageNet labels
imagenet_labels = get_imagenet_labels("mobileNet/label.txt")

# obtain OpenCV DNN predictions
get_opencv_dnn_prediction(opencv_net, input_img, imagenet_labels)

reference:

run tensorflow on gpu

mobileNet labels

Thursday, 27 May 2021

disable gpu on windows shut down

batch file

@echo off
ECHO "Choose an option .."
ECHO "1 = Shutdown"
ECHO "2 = Reboot"


SET /p option=Choose one option-

IF %option%==1 (
echo *** Disabling GPU ***  
C:\Users\zchen\Downloads\devmanview-x64\devmanview.exe /disable "NVIDIA GeForce xxx"
echo *** Done *** 
SHUTDOWN /s /f /t 0
)

IF %option%==2 (
echo *** Disabling GPU ***  
devmanview.exe /disable "NVIDIA GeForce xxx"
echo *** Done *** 
SHUTDOWN -r -t 0
)

auto enable gpu on windows startup

download 64 bit devmanview

create batch file with devmanview.exe to enable graphic driver
@echo off
echo *** Enabling GPU ***
devmanview.exe /enable "NVIDIA xxx"
echo *** Done ***
pause

windows task scheduler -> create basic task -> trigger when I log on -> start a program -> select batch file

WGET windows

https://builtvisible.com/download-your-website-with-wget/