Thursday, 6 May 2021

opencv 43 image alignment


picture is shot tilted

template

key feature matching

aligned image (left), template (right)

stack aligned on top of template

#alignment2.py
# import the necessary packages
from alignment import align_images
import numpy as np
import argparse
import imutils
import cv2

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
                help="path to input image that we'll align to template")
ap.add_argument("-t", "--template", required=True,
                help="path to input template image")
args = vars(ap.parse_args())

# load the input image and template from disk
print("[INFO] loading images...")
image = cv2.imread(args["image"])
template = cv2.imread(args["template"])

# align the images
print("[INFO] aligning images...")
aligned = align_images(image, template, debug=True)

# resize both the aligned and template images so we can easily
# visualize them on our screen
aligned = imutils.resize(aligned, width=700)
template = imutils.resize(template, width=700)

# our first output visualization of the image alignment will be a
# side-by-side comparison of the output aligned image and the
# template
stacked = np.hstack([aligned, template])

# our second image alignment visualization will be *overlaying* the
# aligned image on the template, that way we can obtain an idea of
# how good our image alignment is
overlay = template.copy()
output = aligned.copy()
cv2.addWeighted(overlay, 0.5, output, 0.5, 0, output)

# show the two output image alignment visualizations
cv2.imshow("Image Alignment Stacked", stacked)
cv2.imshow("Image Alignment Overlay", output)
cv2.waitKey(0)

---------------------------
#alignment.py
import numpy as np
import imutils
import cv2


def align_images(image, template, maxFeatures=500, keepPercent=0.2,
                 debug=False):
    # convert both the input image and template to grayscale
    imageGray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    templateGray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)

    # use ORB to detect keypoints and extract (binary) local
    # invariant features
    orb = cv2.ORB_create(maxFeatures)
    (kpsA, descsA) = orb.detectAndCompute(imageGray, None)
    (kpsB, descsB) = orb.detectAndCompute(templateGray, None)

    # match the features
    method = cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING
    matcher = cv2.DescriptorMatcher_create(method)
    matches = matcher.match(descsA, descsB, None)

    # sort the matches by their distance (the smaller the distance,
    # the "more similar" the features are)
    matches = sorted(matches, key=lambda x: x.distance)

    # keep only the top matches
    keep = int(len(matches) * keepPercent)
    matches = matches[:keep]

    # check to see if we should visualize the matched keypoints
    if debug:
        matchedVis = cv2.drawMatches(image, kpsA, template, kpsB,
                                     matches, None)
        matchedVis = imutils.resize(matchedVis, width=1000)
        cv2.imshow("Matched Keypoints", matchedVis)
        cv2.waitKey(0)

    # allocate memory for the keypoints (x, y)-coordinates from the
    # top matches -- we'll use these coordinates to compute our
    # homography matrix
    ptsA = np.zeros((len(matches), 2), dtype="float")
    ptsB = np.zeros((len(matches), 2), dtype="float")

    # loop over the top matches
    for (i, m) in enumerate(matches):
        # indicate that the two keypoints in the respective images
        # map to each other
        ptsA[i] = kpsA[m.queryIdx].pt
        ptsB[i] = kpsB[m.trainIdx].pt

    # compute the homography matrix between the two sets of matched
    # points
    (H, mask) = cv2.findHomography(ptsA, ptsB, method=cv2.RANSAC)

    # use the homography matrix to align the images
    (h, w) = template.shape[:2]
    aligned = cv2.warpPerspective(image, H, (w, h))

    # return the aligned image
    return aligned

------------------------------
#terminal
python alignment2.py --template assets/align2.jpg --image assets/align1.jpg

reference:

No comments:

Post a Comment