Wednesday, 12 May 2021

opencv 46 anonymize face

 
#main.py
import cv2
import numpy as np


def anonymize_face_pixelate(image, blocks=3):
    # divide the input image into NxN blocks
    (h, w) = image.shape[:2]
    xSteps = np.linspace(0, w, blocks + 1, dtype="int")
    ySteps = np.linspace(0, h, blocks + 1, dtype="int")

    # loop over the blocks in both the x and y direction
    for i in range(1, len(ySteps)):
        for j in range(1, len(xSteps)):
            # compute the starting and ending (x, y)-coordinates
            # for the current block
            startX = xSteps[j - 1]
            startY = ySteps[i - 1]
            endX = xSteps[j]
            endY = ySteps[i]

            # extract the ROI using NumPy array slicing, compute the
            # mean of the ROI, and then draw a rectangle with the
            # mean RGB values over the ROI in the original image
            roi = image[startY:endY, startX:endX]
            (B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
            cv2.rectangle(image, (startX, startY), (endX, endY),
                          (B, G, R), -1)
    # return the pixelated blurred image
    return image


cap = cv2.VideoCapture("assets/fashion.mp4")
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

while True:
    ret, frame = cap.read()
    width = int(cap.get(3))
    height = int(cap.get(4))

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    #detectMultiScale (frame, a, b)
    #good value of a is between 1 and 1.5, smaller a = more accurate
    #good value of b is between 3 and 6
    #detect face
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        #cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        face = frame[y:y+h, x:x+w]
        frame[y:y + h, x:x+w] = anonymize_face_pixelate(face, 5)

    cv2.imshow('frame', frame)

    if cv2.waitKey(1) == ord('q'):
        break

    if cv2.waitKey(1) == ord('p'):
        cv2.waitKey(-1)  # wait until any key is pressed

cap.release()
cv2.destroyAllWindows()

reference:

No comments:

Post a Comment