Thursday, 20 May 2021

opencv 51 eigenface

Eigenface provides an easy and cheap way to realize face recognition in that:
  • Its training process is completely automatic and easy to code.
  • Eigenface adequately reduces statistical complexity in face image representation.
  • Once eigenfaces of a database are calculated, face recognition can be achieved in real time.
  • Eigenface can handle large databases.

However, the deficiencies of the eigenface method are also obvious:
  • It is very sensitive to lighting, scale and translation, and requires a highly controlled environment.
  • Eigenface has difficulty capturing expression changes.
  • The most significant eigenfaces are mainly about illumination encoding and do not provide useful information regarding the actual face.
eigenface transform

AI predicts accurately
#project directory
assets
faces
googleNet
deploy.prototxt
res10_300x300_ssd_iter_140000.caffemodel
eigenfaces.py

---------------------
#eigenfaces.py
from imutils import paths
import numpy as np
import cv2
import os
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import argparse
import imutils
import time
from os.path import dirname, abspath
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from skimage.exposure import rescale_intensity
from imutils import build_montages


def detect_faces(net, image, minConfidence=0.5):
    # grab the dimensions of the image and then construct a blob
    # from it
    (h, w) = image.shape[:2]
    blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0))

    # pass the blob through the network to obtain the face detections,
    # then initialize a list to store the predicted bounding boxes
    net.setInput(blob)
    detections = net.forward()
    boxes = []

    # loop over the detections
    for i in range(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated with
        # the detection
        confidence = detections[0, 0, i, 2]
        # filter out weak detections by ensuring the confidence is
        # greater than the minimum confidence
        if confidence > minConfidence:
            # compute the (x, y)-coordinates of the bounding box for
            # the object
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")
            # update our bounding box results list
            boxes.append((startX, startY, endX, endY))
    # return the face detection bounding boxes
    return boxes


def load_face_dataset(inputPath, net, minConfidence=0.5, minSamples=15):
    # grab the paths to all images in our input directory, extract
    # the name of the person (i.e., class label) from the directory
    # structure, and count the number of example images we have per
    # face
    imagePaths = list(paths.list_images(inputPath))
    # print(imagePaths)
    names = [p.split(os.path.sep)[-2] for p in imagePaths]
    (names, counts) = np.unique(names, return_counts=True)
    names = names.tolist()
    # print(names)

    # initialize lists to store our extracted faces and associated
    # labels
    faces = []
    labels = []
    # loop over the image paths
    for imagePath in imagePaths:
        # load the image from disk and extract the name of the person
        # from the subdirectory structure
        image = cv2.imread(imagePath)
        name = imagePath.split(os.path.sep)[-2]
        # print(name, minSamples)

        # only process images that have a sufficient number of
        # examples belonging to the class
        if counts[names.index(name)] < minSamples:
            continue

        # perform face detection
        boxes = detect_faces(net, image, minConfidence)

        # loop over the bounding boxes
        for (startX, startY, endX, endY) in boxes:
            # extract the face ROI, resize it, and convert it to
            # grayscale
            faceROI = image[startY:endY, startX:endX]
            faceROI = cv2.resize(faceROI, (47, 62))
            faceROI = cv2.cvtColor(faceROI, cv2.COLOR_BGR2GRAY)

            # update our faces and labels lists
            faces.append(faceROI)
            labels.append(name)

    # convert our faces and labels lists to NumPy arrays
    faces = np.array(faces)
    labels = np.array(labels)

    # return a 2-tuple of the faces and labels
    return (faces, labels)


# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", type=str,
                default=dirname(dirname(abspath(__file__))) + "\\assets\\faces",
                help="path to input directory of images")
ap.add_argument("-f", "--face", type=str,
                default="",
                help="path to face detector model directory")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
                help="minimum probability to filter weak detections")
ap.add_argument("-n", "--num-components", type=int, default=150,
                help="# of principal components")
ap.add_argument("-v", "--visualize", type=int, default=-1,
                help="whether or not PCA components should be visualized")
args = vars(ap.parse_args())

# load our serialized face detector model from disk
print("[INFO] loading face detector model...")
prototxtPath = "deploy.prototxt"
weightsPath = "res10_300x300_ssd_iter_140000.caffemodel"
net = cv2.dnn.readNet(prototxtPath, weightsPath)

# load the CALTECH faces dataset
print("[INFO] loading dataset...")
print(args["input"])
(faces, labels) = load_face_dataset(args["input"], net,
                                    minConfidence=0.5, minSamples=20)

print("[INFO] {} images in dataset".format(len(faces)))
# encode the string labels as integers
le = LabelEncoder()
labels = le.fit_transform(labels)

# flatten all 2D faces into a 1D list of pixel intensities
pcaFaces = np.array([f.flatten() for f in faces])

# construct our training and testing split
split = train_test_split(faces, pcaFaces, labels, test_size=0.25,
                         stratify=labels, random_state=42)
(origTrain, origTest, trainX, testX, trainY, testY) = split

# compute the PCA (eigenfaces) representation of the data, then
# project the training data onto the eigenfaces subspace
print("[INFO] creating eigenfaces...")

pca = PCA(
    svd_solver="randomized",
    n_components=args["num_components"],
    whiten=True)

start = time.time()
trainX = pca.fit_transform(trainX)
end = time.time()
print("[INFO] computing eigenfaces took {:.4f} seconds".format(
    end - start))

# check to see if the PCA components should be visualized
if args["visualize"] > 0:
    # initialize the list of images in the montage
    images = []

    # loop over the first 16 individual components
    for (i, component) in enumerate(pca.components_[:16]):
        # reshape the component to a 2D matrix, then convert the data
        # type to an unsigned 8-bit integer so it can be displayed
        # with OpenCV
        component = component.reshape((62, 47))
        component = rescale_intensity(component, out_range=(0, 255))
        component = np.dstack([component.astype("uint8")] * 3)
        images.append(component)

    # construct the montage for the images
    montage = build_montages(images, (188, 256), (4, 4))[0]

    # show the mean and principal component visualizations
    # show the mean image
    mean = pca.mean_.reshape((62, 47))
    mean = rescale_intensity(mean, out_range=(0, 255)).astype("uint8")
    cv2.imshow("Mean", mean)
    cv2.imshow("Components", montage)
    #cv2.waitKey(0)

# train a classifier on the eigenfaces representation
print("[INFO] training classifier...")
model = SVC(kernel="rbf", C=10.0, gamma=0.001, random_state=42)
model.fit(trainX, trainY)

# evaluate the model
print("[INFO] evaluating model...")
predictions = model.predict(pca.transform(testX))
print(classification_report(testY, predictions,
                            target_names=le.classes_))

# generate a sample of testing data
idxs = np.random.choice(range(0, len(testY)), size=10, replace=False)

# loop over a sample of the testing data
for i in idxs:
    # grab the predicted name and actual name
    predName = le.inverse_transform([predictions[i]])[0]
    actualName = le.classes_[testY[i]]

    # grab the face image and resize it such that we can easily see
    # it on our screen
    face = np.dstack([origTest[i]] * 3)
    face = imutils.resize(face, width=250)

    # draw the predicted name and actual name on the image
    cv2.putText(face, "pred: {}".format(predName), (5, 25),
                cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
    cv2.putText(face, "actual: {}".format(actualName), (5, 60),
                cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)

    # display the predicted name, actual name, and confidence of the
    # prediction (i.e., chi-squared distance; the *lower* the distance
    # is the *more confident* the prediction is)
    print("[INFO] prediction: {}, actual: {}".format(
        predName, actualName))

    # display the current face to our screen
    cv2.imshow("Face " + str(i), face)

cv2.waitKey(0)

-----------------------
#logs
(venv) C:\Users\zchen\PycharmProjects\opencv\googleNet>python eigenfaces.py --visualize 2
[INFO] loading face detector model...
[INFO] loading dataset...
C:\Users\zchen\PycharmProjects\opencv\assets\faces
[INFO] 401 images in dataset
[INFO] creating eigenfaces...
[INFO] computing eigenfaces took 0.2666 seconds
[INFO] training classifier...
[INFO] evaluating model...
              precision    recall  f1-score   support

     abraham       0.83      1.00      0.91         5
     alberta       1.00      1.00      1.00         5
      carmen       0.75      1.00      0.86         6
      conrad       1.00      1.00      1.00         5
     cynthia       1.00      1.00      1.00         6
     darrell       1.00      1.00      1.00         5
       flyod       1.00      0.86      0.92         7
     jacques       1.00      1.00      1.00         5
        judy       1.00      0.83      0.91         6
       julie       1.00      1.00      1.00         6
    kathleen       1.00      1.00      1.00         6
         mae       1.00      1.00      1.00         5
        phil       1.00      0.86      0.92         7
     raymond       1.00      1.00      1.00         5
        rick       0.80      0.80      0.80         5
      ronald       1.00      1.00      1.00         6
     tiffany       1.00      1.00      1.00         5
      willie       1.00      1.00      1.00         6

    accuracy                           0.96       101
   macro avg       0.97      0.96      0.96       101
weighted avg       0.97      0.96      0.96       101

reference:

No comments:

Post a Comment