from datetime import datetime, timedelta
from matplotlib import pyplot as plt
#from matplotlib import dates as mpl_dates
dates = [
datetime(2019, 5, 24),
datetime(2019, 5, 25),
datetime(2019, 5, 26),
datetime(2019, 5, 27),
datetime(2019, 5, 28),
datetime(2019, 5, 29),
datetime(2019, 5, 30),
]
y = [0, 1, 3, 4, 6, 5, 7]
plt.plot_date(dates, y, linestyle='solid')
plt.gcf().autofmt_xdate()
datetime(2019, 5, 24),
datetime(2019, 5, 25),
datetime(2019, 5, 26),
datetime(2019, 5, 27),
datetime(2019, 5, 28),
datetime(2019, 5, 29),
datetime(2019, 5, 30),
datetime(2019, 5, 23),
]
if time series is not sorted
import pandas as pd
from datetime import datetime, timedelta
from matplotlib import pyplot as plt
import pandas as pd
dates = [
datetime(2019, 5, 24),
datetime(2019, 5, 25),
datetime(2019, 5, 26),
datetime(2019, 5, 27),
datetime(2019, 5, 28),
datetime(2019, 5, 29),
datetime(2019, 5, 30),
datetime(2019, 5, 23),
]
y = [0, 1, 3, 4, 6, 5, 7, 1]
data = pd.DataFrame({'Dates': dates, 'Price': y})
print data
data.sort_values('Dates', inplace=True)
print data
plt.plot_date(data['Dates'], data['Price'], linestyle='solid')
plt.gcf().autofmt_xdate()
Dates Price
0 2019-05-24 0
1 2019-05-25 1
2 2019-05-26 3
3 2019-05-27 4
4 2019-05-28 6
5 2019-05-29 5
6 2019-05-30 7
7 2019-05-23 1
Dates Price
7 2019-05-23 1
0 2019-05-24 0
1 2019-05-25 1
2 2019-05-26 3
3 2019-05-27 4
4 2019-05-28 6
5 2019-05-29 5
6 2019-05-30 7
dates are sorted
reference:
https://www.youtube.com/watch?v=_LWjaAiKaf8&list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_&index=8https://stackoverflow.com/questions/28503445/assigning-column-names-to-a-pandas-series
No comments:
Post a Comment